Surname	Centre Number	Candidate Number
First name(s)		2

GCE A LEVEL

1400U40-1

FRIDAY, 14 JUNE 2024 - MORNING

BIOLOGY – A2 unit 4 Variation, Inheritance and Options

2 hours

	For Examiner's use only		
	Question	Mark Awarded	
	1.	11	
	2.	15	
Section A	3.	13	
	4.	10	
	5.	12	
	6.	9	
Section B	Option	20	
	Total	90	

ADDITIONAL MATERIALS

In addition to this paper, you will require a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen. Do not use correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

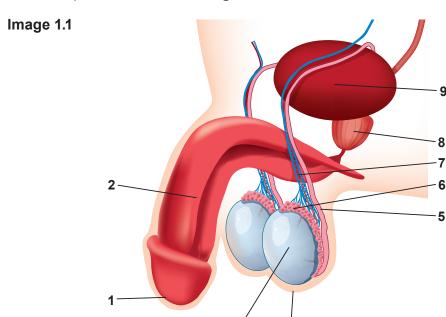
INFORMATION FOR CANDIDATES

This paper is in 2 sections, **A** and **B**.

Section **A**: 70 marks. Answer **all** questions. You are advised to spend about 1 hour 35 minutes on this section.

Section **B**: 20 marks; Options. Answer **one option only**. You are advised to spend 25 minutes on this section.

The number of marks is given in brackets at the end of each question or part-question.


The assessment of quality of extended response (QER) will take place in question **6**. The quality of written communication will affect the awarding of marks.

SECTION A

Answer all questions.

1. The male reproductive system consists of a number of sex organs that play a role in the process of human reproduction. These organs are located on the outside of the body and within the pelvis as shown in **Image 1.1**.

(a) Using the numbers in **Image 1.1**, identify the following structures and briefly describe **one** function for each structure. [5]

Structure	Number from Image 1.1	Function
vas deferens		
scrotum		
oor otaliii		
testes		
epididymis		
prostate gland		

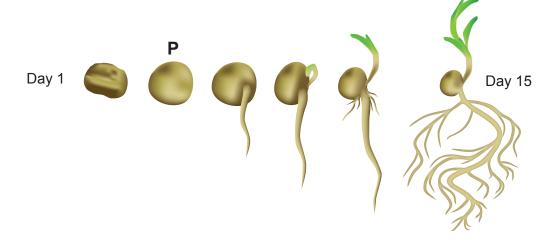
© WJEC CBAC Ltd.

(1400U40-1)

Examiner only

PMT

(b) Com	pare the function of the un	ethra in males and females.	[2]
lmage 1.2	shows the process of sper	rmatogenesis.	
Image 1.2	Type I spermatogonia	re-enter cell cycle	
	Type II spermatogonia		
		A	
		В	
		C D	
(c) (i)	Name the cells A, B, C a	and D in Image 1.2 .	[2]
	Cells	Name	
	A		
	В		
	С		
	D		
	High numbers of sperma		


© WJEC CBAC Ltd. (1400U40-1) Turn over.

1400U401

11

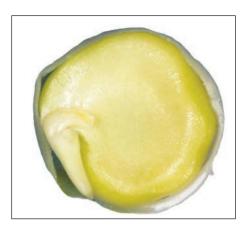

2. Germination involves the rapid onset of biochemical activity and growth of a seedling until the plant can carry out photosynthesis and become independent of the food stores contained in the cotyledons. Image 2.1 shows some stages of a germinating pea plant over a 15-day period.

Image 2.1

(a) (i) The germinating pea seed labelled **P** in **Image 2.1** was cut open. This is shown in **Image 2.2**.

Image 2.2

Add three labelled lines to identify the cotyledon, plumule and radicle on Image 2.2.

Γ	2	•
ı	_	

(ii) State **two** reasons why it is important that the radicle emerges prior to the plumule. [2]

© WJEC CBAC Ltd.

PMT

01	
0 U 4	
140	0 2

(b)	Briefly describe the stages of germination in a non-endospermic seed such as the pea. [3]	
•••••		
•••••		
•••••		

Question continued overleaf

© WJEC CBAC Ltd. (1400U40-1)

Turn over.

Gibberellin is required for maize kernel (seed) germination. It is blocked by another plant hormone, abscisic acid (ABA) whilst the kernel is maturing on the cob. Mutant kernels which cannot produce ABA germinate whilst still on the cob. This is shown in **Image 2.3**.

Image 2.3

causing the appearance of the corn cob in Image 2.3.	[3]
	•••••••••••••••••••••••••••••••••••••••
	•••••••
	••••••
	•••••••••••
	•••••••

With reference to the function of gibberellin, explain why the mutant kernels germinate

only

PMT

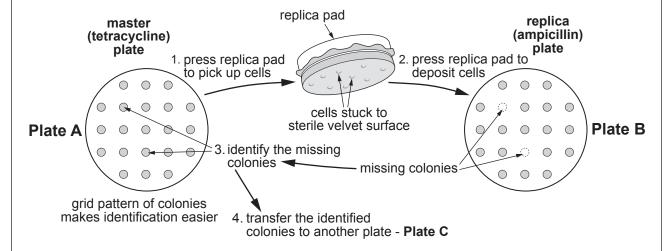
Field trials were carried out to investigate the effect of increasing soil temperature on the average number of wheat plants that grow. The results are shown in **Table 2.4**. In each field, the wheat grains were planted at a depth of 4 cm at a rate of 100 kg per (d) hectare and the temperature was measured in each field at a depth of 5 cm.

Table 2.4

Mean maximum soil temperature /°C	Number of mature wheat plants per m ²
20.2	315.3
33.2	256.7
42.2	89.8

(i)	One simple conclusion from this data is that higher soil temperatures reduce the number of mature wheat plants per square metre. State four other factors that could affect the growth and so your confidence in thi conclusion.			
	l			
	II.			
	III			
	IV			
(ii)	Assuming that this was a valid conclusion, state why the results of this research are of serious significance to worldwide wheat production.	3]		
		•		
	· · · · · · · · · · · · · · · · · · ·			

15


X	an	ηi	n	е
(on	l۱	/	

The	rtificial gene coding for human growth hormone (HGH), was synthesised in a laboratory synthesised gene was used to genetically modify <i>E. coli</i> bacteria, which then produced . The synthesised HGH was identical to natural HGH in size and biological activity.	y.
(a)	The human genome project determined the base pairs that make up human DNA. Explain how the results from the human genome project have allowed the synthesis of the artificial gene to become possible.	of [1]
(b)	State three advantages of using an artificially synthesised gene rather than extracting the gene from the human genome.	g [3
	plasmid used to genetically modify the <i>E. coli</i> is shown in Image 3.1 . It also shows the ions of two antibiotic resistance genes and the site of insertion of the HGH gene.	
	site of insertion of HGH gene tetracycline resistance gene gene	
(c)	Name the two types of enzymes needed for the successful insertion of the human growth hormone gene and state their function in the process.	[2
•••••		••••

© WJEC CBAC Ltd.

Image 3.2

(1)	Explain the need for Plate A in the process.	
(ii)	Explain the results shown on Plate B .	[3
(iii)	Suggest one vital property of the cells on Plate C which would need to be confirmed prior to their use in the production of HGH.	[1
	(ii)	(iii) Explain the results shown on Plate B. (iii) Suggest one vital property of the cells on Plate C which would need to be

(e)	Each <i>E. coli</i> cell transformed with this recombinant plasmid produced 2.9×10^6 molecules of HGH. If there are 1×10^8 bacteria in the culture vessel, calculate the
	number of HGH molecules being produced by the cells. Give your answer in standard form . [2]

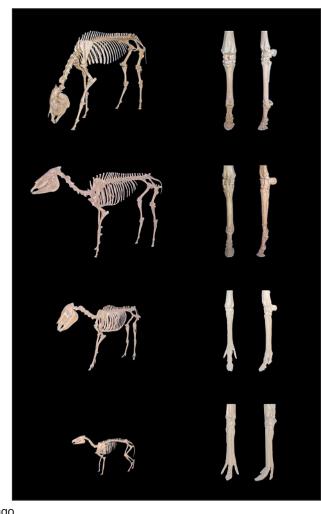
Number of HGH molecules =

13

PMT

4. Bones can be preserved as fossils so research into evolutionary patterns and processes can include extinct vertebrates. **Image 4.1** shows how the skeleton of the modern horse has evolved from a horse-like mammal over the last 38 million years.

Image 4.1



PliohippusLate Miocene
7 MYA

MerychippusMiddle Miocene
11 MYA

Mesohippus Late Eocene 38 MYA

MYA = Million Years ago

(a)	Explain how the information in Image 4.1 supports Darwin's theory of evolution. [3]	
•••••		

© WJEC CBAC Ltd. (1400U40-1) Turn over.

400U401

Ancient horses had many coat colours. One type of gene controlling depth of colour in horses is the dun allele (**D**). For example the bay horse in **Image 4.2** is homozygous for the **d** allele but a horse is a dun if it has at least one **D** allele (**Image 4.3**).

Image 4.2 Bay (dd)

Image 4.3 Dun (DD or Dd)

(b) (i) In a sample of 900 wild horses, 891 were dun and 9 were bay.
 Calculate the frequencies of the three genotypes within this population, assuming that the population is in Hardy-Weinberg equilibrium. [3]

$$p + q = 1$$

$$p^2 + 2pq + q^2 = 1$$

where

p = frequency of the dominant allele (**D**)

q = frequency of the recessive allele (d)

Frequency of **DD** =

Frequency of **Dd** =

© WJEC CBAC Ltd.

PMT

(ii) The population in (b)(i) consisted of randomly mating horses in semi-desert conditions.	
Use all the information given to give two reasons why this population may not be in Hardy-Weinberg equilibrium.	e [2]

Question continued overleaf

Images 4.4A and 4.4B show photographs of a mule and a hinny.

Image 4.4A - Mule

Image 4.4B - Hinny

(c) Mules are considered more patient, hardy and long-lived than horses and are described as less obstinate and more intelligent than donkeys. They can carry heavy loads for long distances so are an ideal pack-animal.

A mule is a hybrid resulting from crossing a male donkey (*E. asinus*) with a female horse (*E. caballus*).

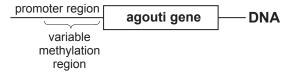
- (i) Explain why a breeder would need to use a donkey and a horse **each time** they wished to produce a mule. [1]
- (ii) The opposite cross (a hinny) can also be carried out, but it is done very rarely. The mother is the much smaller donkey compared with the larger horse mother in a mule cross. Explain why the mule cross is more suitable for a load-bearing pack animal.

10

© WJEC CBAC Ltd.

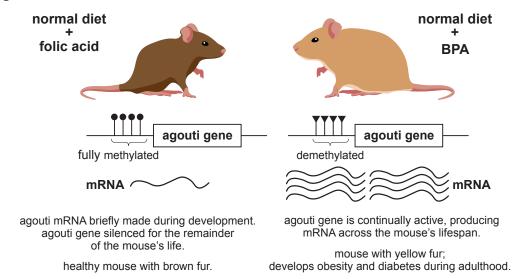
PMT

_	
40	
JC	
40	LC
-	~


				15			
5.	There are i	many	sex-linked genetic	diseases in humans	s which cau	use changes in phenoty	pe.
	X-linked inl	heritar	nce means that the	e gene is located on	the X chro	mosome.	
				deficiency (X-SCID) es very few lymphocy		sive immunodeficiency	
	(a) (i)	l.	X-SCID to draw		show how	and X^d for affected by parents who are both	[2]
		Pare	ental phenotype	unaffected male	×	unaffected female	
		Pare	ental genotypes				
		Gam	netes				
	Space for g	genetio	c diagram				
		II.	Complete the ta	able below linking th	e four diffe	erent genotypes from yo	our
				with their correct ph		sient genotypes nom ye	[2]
			Offsprin	g genotype	C	Offspring phenotype	
				<u></u>			
	(ii)	2018 Calc Wale	3 was 3 139 000. ulate the number os es in 2018.		that would	. The population of Wald have been expected in gnificant figures.	es in [2]
						-	-

Number of cases =

There are other mechanisms, such as epigenetic changes, which can alter the phenotype of organisms. One example is DNA methylation, where a methylated promoter region decreases the expression of a gene and demethylation increases the expression of a gene. This is shown in **Image 5.1**.


Image 5.1

Epigenetic control mechanisms can be seen in coat colour in mice which is influenced by the nutrition of the pregnant female.

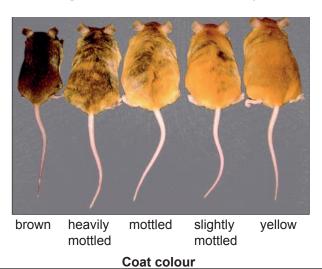
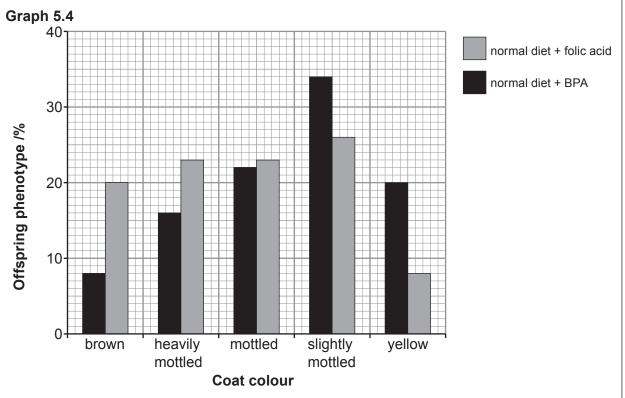

When the pregnant females are fed compounds such as BPA (used in plastic production) with their normal diet, this can cause more yellow offspring to be born. When the pregnant females' normal diets are supplemented with high folic acid, more brown offspring are born. This is summarised in **Image 5.2**.

Image 5.2

When mice were fed the two different diets, the following results were obtained, with ranges in coat colour as shown in **Image 5.3** and number of each type shown in **Graph 5.4**.


Image 5.3

© WJEC CBAC Ltd. (1400U40-1)

PMT

(i)	Using Images 5.1, 5.2, 5.3 and Graph 5.4 , explain the effect of the two different supplements on gene expression and coat colour in mice.	nt [4]
(ii)	Use all of the information to suggest how the results of this study might influence the use of BPA in the production of food containers and packaging.	e [2]
•••••		

12

(b)

© WJEC CBAC Ltd. (1400U40-1) Turn over.

00401

5.	Mutations in the DNA of an organism may have a profound effect on the phenotype. There are two main types of mutations; gene and chromosome.
	Explain what is meant by the term mutation and describe some factors which increase the rate of mutations.
	Describe the different types of gene and chromosome mutations and, using suitable examples, explain the different effects that gene and chromosome mutations may have on the phenotype. [9 QER]

PMT

Examiner
only
1400U401
-

, r	
	Examine only
	9

$\overline{}$	
0	
4	
\supset	
0	
0	
4	7

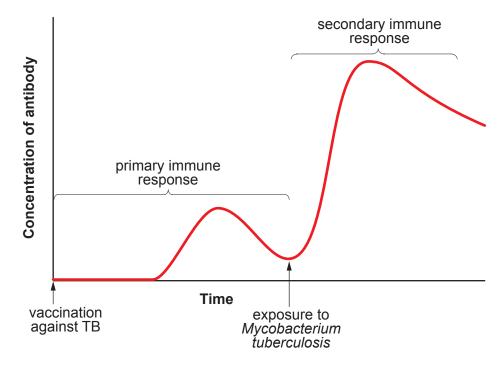
	SECTION B: OPTIONAL TOPICS
Option A:	Immunology and Disease
Option B:	Human Musculoskeletal Anatomy
Option C:	Neurobiology and Behaviour
Answer the q	uestion on one topic only .
Place a tick (✓) in one of the boxes above, to show which topic you are answering.
You are advi	ised to spend about 25 minutes on this section.

© WJEC CBAC Ltd. (1400U40-1) Turn over.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Tube	Option A: Immunology and Disease Tuberculosis (TB) is the leading cause of death by an infectious disease worldwide.					
(a)	(a) (i) State why tuberculosis is called an infectious disease.					
	(ii)	To prevent the spread of TB, the BCG vaccination was introduced in 1953 for children aged 10–14 years old. Define the term vaccine.	[1]			
who a hig	are at h rate ent ar	Population density (people per sq km) Population density (people per sq km) 10 000 or over 7500 – 9999 5000 – 7499 2500 – 4999				
		2 499 or under				



© WJEC CBAC Ltd. (1400U40-1) Turn over.

Examiner only

Graph 7.2 shows the concentration of antibodies released by the body following a BCG vaccination and then after exposure to the live infectious micro-organism, *Mycobacterium tuberculosis*.

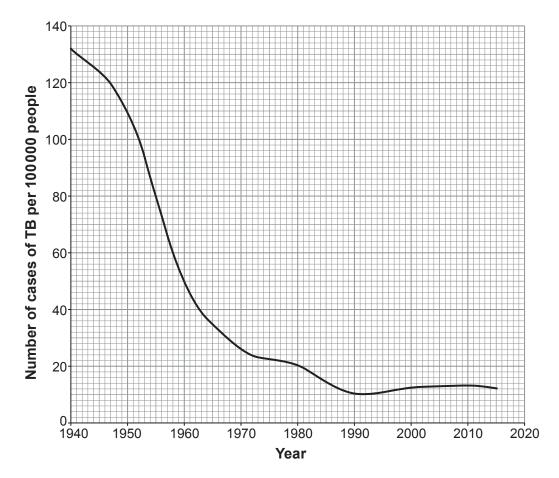
Graph 7.2

(b) The BCG vaccine initiates an active immune response which leads to the production of antibodies by the patient.

Describe and explain the shape of the part of **Graph 7.2** which shows the primary

immune response.		[4]

© WJEC CBAC Ltd. (140


(ii) Wi wh	ith reference to Graph 7.2 , explain how vaccination prevents development of nen exposed to <i>M. tuberculosis</i> .	TB [4]
•••••		
••••••		

© WJEC CBAC Ltd. (1400U40-1) Turn over.

(c) Since the 1940s, antibiotics have been used to treat TB. **Graph 7.3** shows the change in the numbers of diagnosed TB cases in England and Wales from 1940 to 2015.

Graph 7.3

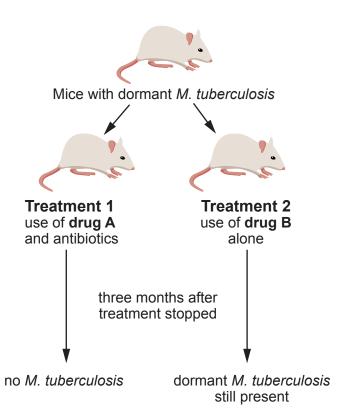
(i) Calculate the percentage decrease in **TB incidence** between 1940 and 2015. [2]

Percentage decrease in incidence of TB = %

Mycobacterium tuberculosis can develop into a dormant state, referred to as latent TB. Whilst dormant, *M. tuberculosis* is resistant to antibiotics. Patients with TB receive a combination of antibiotics to kill active bacteria rapidly and to try to prevent latent TB.

Two new treatments have been proposed to target dormant *M. tuberculosis* to prevent TB recurring in a patient.

Treatment 1


Use of **drug A** to activate the dormant bacteria as well as treating with high doses of antibiotics to kill all activated bacteria.

Treatment 2

Use of **drug B** that will inhibit the activation of any dormant bacteria while the drug is present.

These treatments have been trialled in mice as shown in Image 7.4.

Image 7.4

(ii) Complete the table below by stating **one** advantage and **one** disadvantage for each of the treatments. [4]

Treatment	Advantage	Disadvantage
Drug A and antibiotics		
Drug B alone		

© WJEC CBAC Ltd. (1400U40-1) Turn over.

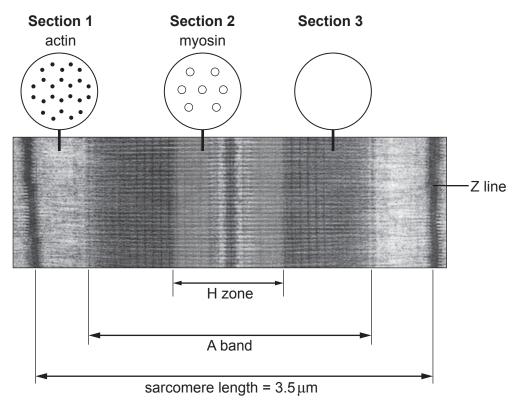
(d)	The methods of treating TB can also be used to treat malarial infections. Explain why these methods are less effective when they are used in the treatment of malarial infections.	Ex
	malarial infections.	[2]

© WJEC CBAC Ltd.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

[4]


Option B: Human Musculoskeletal Anatomy

The human musculoskeletal system is comprised of a number of different tissues, including muscle, cartilage and bone.

Image 8.1 shows the structure and appearance of a sarcomere in relaxed, striated muscle. It also shows transverse sections of the actin and myosin filaments in the sarcomere.

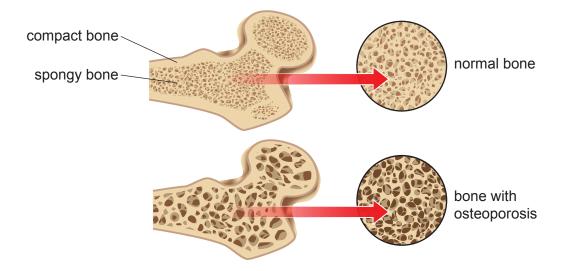
Image 8.1

Transverse sections across sarcomere

(1)	Complete the appearance of transverse Section 3 shown on image 6.1.	[ı]
(ii)	During contraction of the muscle, the sarcomere shortens. Describe and explain what happens to the H zone and A band.	n [4]
•••••		
		•••••
•••••		

(a)

	Exa
(iii) When the sarcomere is contracted, its length is 1.5 μm long. Use Image 8.1 to calculate the percentage decrease in length when the sarcomere contracts.	[2]
Percentage decrease in length of sarcomere =	


(b)	Cartilage is connective tissue found in the skeleton. There are several forms of cartilage.
	(i) Explain how the structure of hyaline cartilage relates to its function in the skeleton. [2]
	ge 8.2 shows a normal knee joint and a joint affected by rheumatoid arthritis.
	normal knee joint knee joint with rheumatoid arthritis
	(ii) Describe what is meant by rheumatoid arthritis and name two types of tissues affected by rheumatoid arthritis as shown in Image 8.2 . [2]

© WJEC CBAC Ltd.

(c) Osteoporosis is a form of brittle bone disease in humans. It is caused by the loss of calcium from the bones leading to decreased bone density. **Image 8.3** shows a cross section of bone from a healthy patient, and one from a patient suffering from osteoporosis.

Image 8.3

(i)	Using Image 8.3 and your own knowledge, describe the effect of osteoporosis of the composition of the bones.	on [2]

© WJEC CBAC Ltd. (1400U40-1) Turn over.

Amniotic fluid contains a form of stem cell that can differentiate into osteoblasts. Research has been carried out to assess the effectiveness of stem cells in treating osteogenesis imperfecta (OI) in mice.

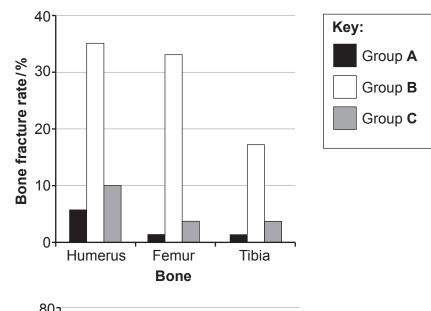
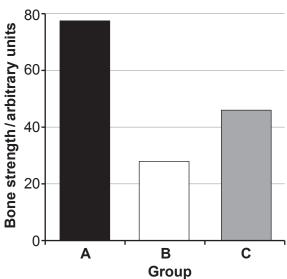

Three groups of mice were tested. The treatment received by each group is shown in **Table 8.4**.

Table 8.4


Group of mice	Osteogenesis imperfecta (OI) present	Received amniotic stem cells at birth			
A – healthy mice	No	No			
B – control group	Yes	No			
C – experimental group	Yes	Yes			

The results of the research are shown in **Graphs 8.5** and **8.6**.

Graph 8.5

Graph 8.6

© WJEC CBAC Ltd. (1400U40-1)

(ii)	Summarise the effect of stem cell treatment in the experimental group C in comparison to the healthy mice (A) and the control group (B) shown in Graphs 8.5 and 8.6 .	[3]
	Graphs 8.5 and 8.6.	[3]
•••••		
(iii)	The use of human stem cells is being considered for clinical trials in humans to treat osteoporosis. Using all of the information provided, suggest how stem cell treatment could improve the condition of bones in osteoporosis patients.	[2]
	treatment could improve the condition of bones in osteoporosis patients.	[4]
•••••		•••••
•••••		•••••

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Option C: Neurobiology and Behaviour

9. Prairie dogs (*Cynomys Iudovicianus*) are rodents, native to the grasslands of North America, which live in large colonies. Members of a family group interact through a variety of social behaviours such as kissing and grooming one another. **Image 9.1** shows prairie dogs sharing a greeting kiss.

Image 9.1

(a) Prairie dogs are said to demonstrate social behaviour.

Define the term social behaviour.

soun bobs away	rie dogs communicate with other members of the colony by making different ding barks. When an intruder approaches, the first prairie dog gives a sharp bark, a up and down, barks again, and then plunges into a burrow. Other lookouts further repeat this behaviour alerting other members of the colony along the route taken be intruder.
/ii)	The social behaviour of 'barking and bobbing' is an example of a fixed action

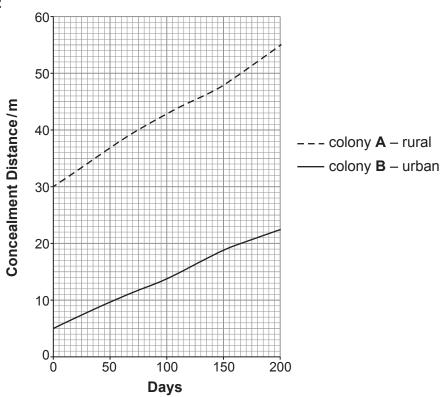
(iii)	State two differences between a fixed action pattern and a reflex action.	[2]
•••••		
()	pattern. Explain how such a fixed action pattern is generated and why it may advantageous to the animals within the social group.	be [2]

© WJEC CBAC Ltd. (1400U40-1) Turn over.

Examiner only

[1]

Social	behaviour involves a large number of learnt responses.
	chers investigated the behaviour of prairie dogs in colonies in Colorado. They ying to find out if prairie dogs became habituated to the arrival of a human in thei
(i) [Define the term habituation and explain why it is an advantage to the prairie dogs. [2]
The res	searchers selected two colonies of prairie dogs:
Colony	A From a rural area, out of town, and not used to human presence.
Colony	B From an urban area, close to city parks, where the prairie dogs would occasionally encounter humans.
concea the pra	s slowly approached each colony 100 times over 200 days. They recorded the lment distance – this is the distance from the lookout animal to the human when irie dogs went down into the burrows. The researchers expected that the prairie ould become habituated to the presence of humans.



© WJEC CBAC Ltd.

The results are shown in **Graph 9.2**.

Examiner only

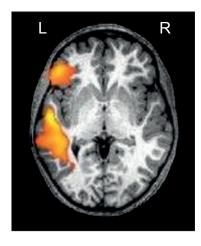
Graph 9.2

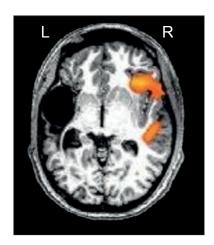
(ii) Using **Graph 9.2**, calculate the percentage increase in concealment distance for the rural prairie dogs over the 200 days. [2]

Percentage increase in concealment distance =

(111)	expectations were correct.	[3]

© WJEC CBAC Ltd. (1400U40-1) Turn over.


(c) Images 9.3 and 9.4 show fMRI scans of two patients taken whilst carrying out language skill tasks.


Image 9.3

fMRI taken from a healthy adult patient

fMRI taken from an adult patient who had a stroke shortly after birth

State why an fMRI scan was the most suitable form of brain scan to show where

(ii) Suggest the area of the brain where the stroke took place and explain what has happened in the brain of the stroke patient in Image 9.4 to account for the fMRI scan result.	
	4]
	••••

© WJEC CBAC Ltd.

The patient in **Image 9.4** regained all aspects of language. **Image 9.5** shows an fMRI scan from a patient who had a stroke as a mature adult.

Image 9.5

(III)	for this patient to fully regain all aspects of language.	t [3]

		••••

END OF PAPER

20

© WJEC CBAC Ltd. (1400U40-1) Turn over.

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examir only

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only

